
Teaching Literary Text Analysis and Visualization with R

Tassie Gniady and Eric Wernert

Fig. 1. Comparison of the default result acheived when clicking ”Reveal” on the included Shakespearean Corpus in Voyant (left) vs.
using an RScript with the Folger Shakespeare Digital Texts “dramatic” extraction (right) wherein speaker names and stage directions
have been removed. An early modern stopword list has also been applied in addition to a standard English one.

Abstract—Over the past year, our group has been developing an open instructional workflow for text analysis that aims to build
algorithmic understanding and basic coding skills before scaling up analyses. We have chosen to bootstrap in R because of its
statistical and graphical capabilities and because of its wealth of domain-specific packages. Moreover, the open source and scripting
nature of R allows for methods that are repeatable, extensible, scalable, and sustainable. The aim is to provide code templates that
can be adapted, remixed, and scaled to fit a wide range of text analysis tasks. Here we will step through one algorithm from initial
engagement via a Shiny web app to a highly annotated RNotebook to a customizable RScript and its output.

Index Terms—digital humanities, text analysis, visualization, r, repeatable workflows

1 INTRODUCTION

Text analysis is an important aspect of literary corpus research in the
digital humanities. Popular tools like Voyant [10] and AntConc [2]
perform significant computational processing for users while hiding
most or all of the implementation details. Voyant 2.0 has a wide
array of analysis tools, but all of the computation is “black boxed”,
meaning that the details of the implementation cannot be examined
unless one downloads and parses the entire Java code set. The idea
behind AntConc is similar, although it runs as a desktop app and is
less visualization-oriented than Voyant with dispersion graphs being
the only graphical output. We believe that, for scholars and students
doing original work in this area, an understanding of fundamentals of
the coding behind text analysis is necessary for them to be full par-
ticipants in the research and to be able to question results adequately.
They may also engage in a self-directed interactive dialog with their
analysis, rather than following a fixed workflow prescribed by GUI-
driven analysis tools.

In fact, Voyant developers Stéfan Sinclair and Geoffrey Rockwell
presented a poster at the Digital Humanities 2016 Conference this past
July entitled “Voyant Notebooks: Literate Programming, Program-

• Tassie Gniady, Indiana University. E-mail: ctgniady@iu.edu.
• Eric Wernert, Indiana University. E-mail: ewernert@iu.edu.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of
Publication xx xxx. 201x; date of current version xx xxx. 201x.
For information on obtaining reprints of this article, please send
e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx/

ming Literacy.” On the poster, Sinclair and Rockwell document the
next phase of expansion for Voyant: notebooks that will combine text,
code, and visualizations. They write that the digital humanities is the
perfect place to investigate “the balance between essayist and coder”
creating a “natural blend of the expression of intellectual process with
the exposition of technical methodologies.” They then point to the
benefits of explanation for teaching and reproducibility.However, they
also note the obstacles of having dynamic notebooks which include:
intellectual property rights, potentially malicious code, and browser
freezes during data intensive executions [9].

Over the past year, the Cyberinfrastructure for Digital Humanities
(CyberDH) Group at Indiana University has been developing an open
instructional workflow for text analysis that aims to build algorithmic
understanding and basic coding skills before scaling up analyses [4].
We have chosen to bootstrap in R, a high level and high productiv-
ity language, with methods that are open, repeatable, and sustainable.
The aim is to provide code templates that can be adapted, remixed,
and scaled to fit a wide range of text analysis tasks. This position
paper presents our approach to teaching computational text analysis
and presents a representative hypothetical case study in which two dif-
ferent users are able to start with the same corpus and adapt code to
achieve very different end results in a way not currently possible with
black box tools.

2 BACKGROUND

Black box tools with GUIs that hide computation are currently very
popular for introducing new practitioners of text analysis in the digital
humanities to basic algorithms and outputs. In 2012, AntConc was
downloaded 120,000 times by users in 80 different countries [2]. Voy-



ant 1.0 had 113 sites linking to it actively in 2012 [10], and the week
Voyant 2.0 was released the server went down multiple times from ex-
cess traffic [8]. However, of the two default corpora available for ex-
ploration on Voyant, one is Shakespeare’s plays—with speaker names
and stage directions included. This means that all default frequency
analysis will be skewed, not a fact that this is immediately evident
when simply clicking “Reveal.” It was only when noticing the word
“henry” in the word cloud (left of Fig. 1) that the authors realized that
speaker names and stage directions were a major problem. Because
of the Henry plays (Henry IV Part 1 2, Henry V, Henry VI Parts 1,
2, 3 and Henry VIII), Voyant’s default view counts every time a King
Henry speaks because lines are prefaced “KING HENRY.” Thus, any
dramatic analysis of frequency from simple word clouds to sophisti-
cated topic modelling will be incorrect. When these false speaker hits
are removed, the count of Henry (and its contexts) goes from 1310
uses to 215.

On the other hand, the Visualizing English Print (VEP) project of-
fers “default” and “dramatic” text extractions. “Dramatic” text ex-
tractions yield “only the text that is meant to be spoken”–no speaker
names, and no stage directions (see the use of “enter” in the word cloud
on the left of Fig. 1) [11]. For the researcher who has thought about
the implications of speaker names and stage directions (as has VEP
member Michael Whitmore, Director of the Folger Shakespeare Li-
brary) on text processing algorithms and their visualizations involving
frequency such as word clouds, co-occurrence, and dispersion plots,
and even topic modeling, the difference in results is dramatic. We
downloaded the dramatic files from VEP and placed them into a basic
RScript, resulting in the word cloud on the right of Fig. 1 [4]. At this
juncture stopword lists were adjusted to the early modern lexicon as
words like “hath,” “tis,” and “doth” need to be excluded. When the au-
thors tried to upload a custom stopword list to Voyant to replicate this
workflow, the web page crashed multiple times. However, this is the
perfect place to delve deeper into our R workflow and why we think it
will yield better results for humanists in the long run.

3 AN R WORKFLOW FOR HUMANISTS

Having looked at one of the most popular “plug-and-play” tools for
corpora visualization, it becomes evident that even simple visualiza-
tions like wordclouds can lead to inaccurate results if the user is not
thinking through how a corpus is being processed. We believe that if
the user understands how the algorithm is generating visualizations,
they can contribute more meaningfully to critiques of sophisticated al-
gorithms when partnered with programmers or even go on to bootstrap
themselves with awareness of their domain’s particular caveats (just as
one of this paper’s author’s is an early modern literature scholar who
worked through Matthew Jockers’s Text Analysis with R for Students
of Literature [6] to get started). Thus, we advocate teaching human-
ists the basics of coding. To this end we have a three-step process of
introducing R: web-deployed Shiny apps, highly marked up RNote-
books, and lightly commented RScripts, both in “regular” and higher
performance versions. All are available for download on Github (with
associated data from Shakespeare and Twitter) [4]. What follows is a
sample workflow in which two different users begin with the same vi-
sualization and follow different paths to achieve different conclusions
in a way that would be difficult with a black box tool.

3.1 Shiny Web App

We begin with a comparison of strategically chosen words across eight
popular Shakespeare plays. Shiny apps serve the same role as tools
like Voyant in that they are meant to introduce users to an algorithm
and draw the user in through visualizations that make trends or outliers
in a given text or corpora immediately apparent. Voyant would then fa-
cilitate the uploading of different text for the re-application of a given
visualization technique or the application of another visualization tool
on the same text. However, our Shiny apps are not intended to be the
actual analysis tool, but rather are meant to interest the user in how an
algorithm works, leading them into examining the code that drives the
output before facilitating adoption and/or further customization.

Fig. 2. Shiny Web App of Frequent Terms in Eight Popular Shake-
spearean Plays.

To illustrate, we follow the paths of User A and User B as they
work through the same RNotebook that allows them to inspect word
frequencies (Fig. 3), but then apply the RScripts based on the note-
book in completely different ways. The RNotebooks are heavily an-
notated and explain both why lines of code are used and how they
function–hereby fostering an understanding of how data is analyzed
and visualizations are created. This understanding affects humanists’
ability to determine if the output is an accurate reflection of the corpus
because they are more involved in its production. Even though we are
dealing with a simple algorithm–counting the instances of one word
in a series of texts–the beginnings of a sophisticated research question
can be embarked upon. In Fig. 2 “father” is chosen from the drop
down menu as the jumping off point for Users A and B [3]. User
A notices that there are 70 instances of the word “father” in Hamlet,
only five less than in King Lear, a quintessential play about the role of
fatherhoood. Thus, she speculates that the spectral father in Hamlet,
who dies before the play begins, is almost as present as the physical
father (Lear himself) whose entire dilemma revolves around how to
best pass on his role as king/father to an entire kingdom. On the other
hand, User B is more interested in kinship in general, and he begins
to speculate about relationships between mothers, fathers, sons, and
daughters in the Shakespearean corpus.

Fig. 3. A Portion of an Annotated RNotebook on Word Frequency.

3.1.1 User A
User A proceeds to the RScript and proceeds to change input texts
and the number of words displayed so that she now has a sense of
how “father” plays out in both Hamlet and King Lear. She sees that



“king” and ”father” rank right next to each other in terms of frequency
in both plays suggesting an entwining of fatherhood and monarchy, as
suspected. While she is now looking at a line graph of the frequency
of top terms, this is simply a drilled-down look into the frequency bar
chart she encountered in the Shiny app. She can now further control
the input text, how many terms appear in the chart, or generate a list
of the most frequent terms and how often they are used (Fig. 4). In
fact, the top ten words in each play bear a striking resemblance to one
another. “Good” and “lord” are honorifics–but the use of “love” indi-
cates another way in which fealty is discussed, tested, and ultimately
broken down in each of these tragedies.

Fig. 4. A portion of a lightly commented RScript with remix ideas.

3.1.2 User B

After exploring the notebook, User B decides to look at the top terms
in the entire Shakespearean dramatic corpus. Because “good” and
“lord” are not useful to his analysis, he adds them to the stopword
list. Immediately, it becomes apparent that Shakespeare writes a lot
about men as “man,” “men”, “king”, and “father” all appear in the top
ten words in the corpus. Even looking at the next ten words only adds
”master” to the category of male words. Inspecting the frequency list
shows that “lady” appears 23rd on the list with 675 usages–about a
third as many as “man” at 1931 and 10% of all the male words pre-
ceding this usage. A cursory glance at a female playwright who wrote
about seventy years after Shakespeare, Aphra Behn, known as the first
woman to make her living by her pen, reveals a much different story.
“Man” is the third most used word, but it is the only male term in the
top ten and “woman” is the sixth most used term.

4 CONCLUSION

While Voyant, AntConc, and the like can make possible similar work
to that done here, we think that bootstrapping humanists into the cod-
ing side of text analysis is worthwhile as it teaches them about how
the computer is parsing and analyzing the text. Even using the R Text
Mining package [5] requires the user step through different commands
necessary to clean a corpus—making them think about how charac-
ter strings like “lake” and “Lake” need to be computationally equiv-
alent to render good results, or why a custom stopword list might be
needed. Sinclair and Rockwell, building on over a decade of evolv-
ing black box tools, presented the next evolution of Voyant just this
summer at the international DH conference in Krakow, Poland. They
want to build upon the popularity of exploratory blogs that make code

Fig. 5. Comparing terms from two different playwrights.

and detailed analysis available such as those by Ted Underwood, Ben-
jamin Schmidt, Lisa Rhody, and Scott Weingart [9]. By keeping our
workflows simple and relying on users to download our scripts and
remix them on their own computers, we have avoided these pitfalls
and created the base for our text analysis algorithms from Shiny app
to RNotebook to RScript in a little under a year.

That said, our development has been driven from the perspective
of digital humanists, not as visualization experts. Thus, our visualiza-
tions have been relatively simple, even though more sophisticated vi-
sualizations are supported in R. We welcome critiques or ideas for en-
hancement of our visualizations that could lead to more sophisticated
outcomes, as long as the code remains relatively straightforward and
understandable to digital humanities researchers and students. Like-
wise, we encourage visualization developers to expose their innovative
tools and techniques to languages like R to make them more accessible
to the growing community of coding-capable digital humanists.

ACKNOWLEDGMENTS

The authors wish to thank Grace Thomas, the CyberDH graduate as-
sistant, who helped to develop the RNotebooks and Shiny apps.

REFERENCES

[1] L. Anthony. The past, present, and future of software tools in corpus
linguistics. Linguistic Research, 30(2):141–161, 2013.

[2] L. Anthony. Antconc 3.4.3. Software., 2014.
[3] Cyberinfrastructure for Digital Humanities Team. Term Frequency Shiny

App, 2016. https://cyberdh.shinyapps.io/TermFreq/.
[4] Cyberinfrastructure for Digital Humanities Team. Text Analysis Github

Repository, 2016. https://github.com/cyberdh/Text-Analysis.
[5] I. Feinerer. Introduction to the tm package: Text mining in r, July 15

2015.
[6] M. Jockers. Text Analysis with R for Students of Literature. Quantitative

Methods in the Humanities and Social Sciences. Springer International
Publishing, 2014.

[7] S. Sinclair and G. Rockwell. Examples gallery: Examples of voyant tools
in research, 2012. http://docs.voyant-tools.org/about/examples-gallery/.

[8] S. Sinclair and G. Rockwell. Voyant Tools Documentation, 2012.
http://www.sitelinks.info/docs.voyant-tools.org/.

[9] S. Sinclair and G. Rockwell. Voyant Notebooks: Literate Programming,
Programming Literacy. DH, Krakow, Poland, 2016.

[10] S. Sinclair and G. Rockwell. Voyant Tools, 2016. http://voyant-tools.org/.
[11] Visualizing English Print, 2016. http://graphics.cs.wisc.edu/WP/vep/workflow/.
[12] @VoyantTools. Twitter, April 8 2016.


	Introduction
	Background
	An R Workflow for Humanists
	Shiny Web App
	User A
	User B


	Conclusion

